
On the possible identification of defects using the autocorrelation function approach in double

Doppler broadening of annihilation radiation spectroscopy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 10475

(http://iopscience.iop.org/0953-8984/10/46/015)

Download details:

IP Address: 171.66.16.210

The article was downloaded on 14/05/2010 at 17:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/46
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 10475–10492. Printed in the UK PII: S0953-8984(98)97623-8

On the possible identification of defects using the
autocorrelation function approach in double Doppler
broadening of annihilation radiation spectroscopy

C D Beling†, W LiMing†, Y Y Shan†, S H Cheung†, S Fung†, B K Panda‡
and A P Seitsonen§
† Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong, People’s
Republic of China
‡ Forschungszentrum Rossendorf, Postfach 510119, D-01314 Dresden, Germany
§ Fritz-Haber-Institute der Max-Plank-Gesellschaft, Faraday 4–6, 14195 Berlin—Dahlem,
Germany

Received 30 April 1998

Abstract. The recent revived interest in the use of double-Doppler broadening of annihilation
radiation (D-DBAR) spectroscopy, which employs two Ge detectors in back-to-back geometry,
has stemmed mainly from its potential in defect identification as a result of its elemental
sensitivity through core annihilations in atoms at the defect site. Emphasis has thus largely
concentrated on the high momentum spectral range. In contrast the present work emphasizes
the need to also focus attention on the low momentum region of the D-DBAR spectra. It
is argued that the

√
2 improved resolving power of D-DBAR, in conjunction with spectral

deconvolution, should give future 1D (one dimensional) momentum data approaching in quality
those obtainable using 1D-ACAR (angular correlation of annihilation radiation), thus forming
an alternative technique for observing the structure containing diffraction patterns that originate
from annihilations with localized electron states at positron trapping defects. Rotation of the
sample about a specified crystal axis, and the binning of events by angle, is suggested as a
means of extending the technique to form a 2D- (two dimensional) DBAR counterpart to 2D-
ACAR. The advantages of considering the real space positron electron wavefunction product
AF (autocorrelation function), obtained by simple manipulation of the D-DBAR data in Fourier
space, are outlined. In particular the possible visualization offered in real space of a defect’s
physical geometry, with the prospect of building up a library of contour patterns for future defect
identification, is discussed, taking the silicon monovacancy in Si and the negative As vacancy
in GaAs as examples.

1. Introduction

Positrons are well known for their ability to trap into vacancy related defects and to
yield information on such defects through the emitted annihilation radiation [1]. Such
studies have, in the past, mainly been carried out using single parameter characterization
of the positron annihilation data pertaining to the defect. In PAL (positron annihilation
lifetime) spectroscopy, for example, information comes from the longer defect related
lifetime component in the spectra. In DBAR (Doppler broadened annihilation radiation)
spectroscopy the definedS parameter is higher in defects due to more annihilations occurring
with low momentum valence electrons [2]. Recent years have, however, seen two important
advances in the use of the DBAR technique. The first is the introduction of the dualS
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(valence) andW (core) parametrization for a defect, which when displayed in the form of
an (S,W ) plot against an experimental variable, becomes a powerful way of distinguishing
different defects [3]. The second is that of introducing a coincidence detector to reduce
background, allowing the technique to become sensitive to core annihilations and thus the
chemical environment of the positron within the defect [4].

It is of interest to note that, apart from one earlier study [5], the third main positron
annihilation technique, namely ACAR (angular correlation of annihilation radiation) has, in
contrast to PAL and DBAR spectroscopies, been almost exclusively reserved for studying
Fermi surfaces or valence band structures in defect free materials [6]. Recently, however,
there have been some notable departures from this trend. For example Penget al [7] have
shown how, using photo-excitation to populate the V−

As defect in semi-insulating GaAs, the
ACAR spectrum of this defect can be obtained. They suggested that such defect ACAR
spectroscopy be used as a means of ‘fingerprinting’ different defects in materials. Likewise,
in a detailed study using both PAL and DBAR spectroscopies to ascertain the relative
fractions of V−As and V0

As present at different temperatures in n-type GaAs, Ambigapathy
et al [8] were able to separate out the ACAR spectra for both these charge states of the
VAs defect. The ACAR spectra showed, as expected, the negatively charged V−

As was more
inwardly relaxed than V0As .

Recently the subject of defect identification using ACAR has been addressed
theoretically by McMullen and Bishop [9] who suggested that the observed ACAR spectrum
of a defect should be considered as the diffraction pattern of the defect. This being so,
defect-ACAR could be far more than just a convenient defect fingerprinting tool, if, as a
diffraction pattern, spectra could through Fourier inversion provide the spectroscopist with
some direct visual structure of a crystal defect. In this context, it has been known for some
time that the Fourier transformation of the momentum distribution gives in real space the
autocorrelation function (AF) of the positron–electron wavefunction product at the site of
annihilation [10]. Visual structural information on the crystal lattice can indeed be seen
for full-band materials such as semiconductors, where zero passages in the AF occur very
close to the Bravais lattice positions, thus giving some kind of lattice image [10–12]. The
question, however, as to what perturbation, if any, occurs to the positions of these AF zero
passages, if positrons annihilate from a vacancy defect state rather than the Bloch state
has not yet been satisfactorily addressed. For example one might naturally speculate as to
whether or not, if there is an inward atomic relaxation at the defect site, there might also
be a related inward shift of the lattice related positions of the AF zero passages.

Another recent development has been the resurgence of interest in the D- (double)
DBAR technique [13] stimulated by the need to gain elemental specificity to atoms at a
defect site localizing the positron [4]. The technique employs two Ge detectors that operate
in back-to-back configuration so as to detect the energy of both annihilation photons, and
gives rise to symmetric spectra with very low background [14]. Although suffering from
poorer momentum resolution than its 1D (one dimensional) ACAR counterpart, D-DBAR
in fact makes an important complimentary tool, through its ability to access the core
electron momentum distributions outside the typical 10−2 mc (10 mrad) ACAR working
range [14]. As regards the poorer resolution, D-DBAR does have the advantage over
conventional DBAR spectroscopy in that a

√
2 (∼40%) improvement in instrumental

resolution is obtained as a result of the individual errors from each Ge detector adding
in quadrature [2]. Capitalizing on this fact and employing deconvolution software, Britton
et al [15] built a D-DBAR system with a 386 eV effective resolution (fwhm) (1.5 mrad
ACAR equivalent). They also speculated that further improvements could make D-DBAR
of competitive resolving power to ACAR spectrometers (fwhm∼ 0.5–1 mrad) [15]. This
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being the case, D-DBAR would have a significant advantage over 1D-ACAR, namely that of
a significantly higher efficiency. Essentially the same quality of spectrum could be obtained
but with a much reduced source activity making the D-DBAR spectrometer a versatile
instrument for studying defect valence structures in the low momentum regime, while still
retaining the advantage of being able to inspect the high momentum (core electron) regime.

The purpose of this paper is twofold. First, using a theoretical approach and within the
context of 2D-ACAR spectroscopy, we attempt to show the potential of forming a 2D-AF
mapping for aiding atomic structural identification of crystal defects. Second, by discussing
experimental aspects, our aim is to demonstrate that D-DBAR spectroscopy (and its 2D
extension, 2D-DBAR spectroscopy) has the potential to form an essentially equivalent tool
for defect identification. The structure of this paper is as follows. In section 2 we review the
idea of the 2D-ACAR spectrum of defect trapped positrons as being the diffraction pattern
of the defect [9]. Here, for purposes of aiding the discussion, the momentum distributions
pertaining to the V−As defect in GaAs as presented in [9] are repeated. In section 3 of the
paper the AF formalism is reviewed, the point being stressed that the 2D (two dimensional)
AF mapping is probably the best real space structural view that quantum mechanics allows
of the crystal defect. AF mappings obtained from the simple tetrahedrally coordinated defect
model of [9] are compared with results obtained from the relaxed state of the V0

Si in Si
obtained using anab initio pseudopotential supercell calculation. In section 4 of the paper
attention is turned to D-DBAR spectroscopy, where arguments are given showing that the
technique has both the potential of approaching ACAR spectroscopy in terms of resolving
power, and a natural connection with AF mapping formalism. A 2D (two dimensional)
form of DBAR momentum spectroscopy is considered which involves rotation of the sample
between the two detectors. Conclusions are drawn in section 5. Throughout we reserve
the nomenclature D-DBAR for the essentially 1D momentum spectroscopy produced by
dual parameter system of Ge detectors, and the term 2D-DBAR is strictly confined to the
analogue of 2D-ACAR, namely the measurement of the 2D projection of 2γ momentum
space.

2. The defect diffraction pattern

Here, as a means of aiding discussion we follow closely the ideas of McMullen and Bishop
who recently pointed out that the momentum distribution of 2γ annihilation photon pairs
arising from annihilations with localized defect electron orbitals form what in reality is a
diffraction pattern of the defect [9]. They considered the case of a positron localized at a
V−As vacancy defect in GaAs, and its subsequent annihilation with the four dangling bond
localized electron states that hybridize into a1 and t2 states [16]. The probability density
in 2γ momentum spaceρ2γ (p), neglecting any enhancement effects, is thus given as a
summation over these four localized electron states of the diffraction type integrals:

ρ2γ (p) =
4∑

j=1

∣∣∣∣ ∫ ϕ+(r)ψj (r) eik·r d3r

∣∣∣∣2
=

4∑
j=1

4∑
i=1

aij

∣∣∣∣ ∫ ϕ+(r)ϕi(r) eik·r d3r

∣∣∣∣2 (1)

where the first summation is over the four electron states, the second is over the four nearest
neighbour atoms and theaij are the linear coefficients of theith dangling atomic orbital to
the total electron wavefunctionsψj . For the V−As defect (and its analogue V0

Si) the summation
in (1) breaks into two, the first being for the two electrons in the a1 state, and the second
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the two in the t2 state. As pointed out in [9] the diffraction-like nature ofρ2γ (p) is made
clearer by recognizing that thej th positron–electron wavefunction productϕ+(r)ϕj (r) is a
function peaked at some positionβRi (Ri being theith atom’s position) due to both the
falling-off in the positron wavefunction and the rising of the electron wavefunction. The
form of (1) may thus be rewritten in the more transparent form [9]:

ρ2γ (p) ≈
4∑

j=1

∣∣∣∣ 4∑
i=1

aij exp(ik · βRi )

∣∣∣∣2 = 4∑
j=1

ρ
2γ
j (p) (2)

where one notes that for a single electron statej , ρ2γ
j (p) is a diffraction pattern with phasing

between the four atomic wave components coming both from theaij (essentially aperture
functions) and the phase factors exp(ik ·βRi ). Maxima occur inρ2γ

j (p), under constructive
interference conditions when an integral number of Compton wavelengths (h/mc) fit along
the path length difference between any two positron–atomic distancesβRi in the direction
of observation, assumingaij to be of the same sign for both atoms. With the Compton
wavelength being 0.024̊A and typical interatomic distances∼5 Å diffraction maxima
are expected at∼10−3 mc momenta, and are just within range of high resolution ACAR
spectrometers.

We follow further the procedure of [9] treating the positron wavefunction simply as a
single Gaussian function centred at the origin:

ϕ+(r) = α0√
π

e−α
2
0r

2
(3)

while the localized electron states are approximated by hybrids of the four dangling atomic
orbitals (also taken as Gaussians) of the nearest tetrahedrally coordinated neighbour atoms
[16]:

ψj(r) =
4∑
i=1

ajiϕj (r) = α√
π

4∑
i=1

aji e−α
2(r−Ri )

2
(4)

where the two lowest energy a1 states (within the valence band) have

aj1 = aj2 = aj3 = aj4 = 1 (5)

and the two higher energy t2 states (within the bandgap) have

aj1 = aj4 = 1 aj2 = aj3 = −1. (6)

This model permits an analytical form for the three dimensionalρ2γ (p) distribution for the
a1 and t2 states as given by equations (5) and (6) of [9]. Single integration overpz, the
[001] direction, gives the expected 2D-ACAR spectraN(px, py):

N(px, py) =
∫
pz

ρ2γ (p) dpz. (7)

The a1 and t2 states both give rise to differentN(px, py) and these are shown in figures 1(a)
and 1(b) respectively. These spectra show the diffraction-like features expected from a
tetrahedrally coordinated structure, with the same minima occurring at 6.3 mrad in the
[100] and [010] crystallographic directions as reported in [9]. Diffraction maxima are seen
along the [110] and [̄110] directions for both a1 and t2 states as expected since the projections
of the four atoms onto the (001) plane lie along these directions. The summed diffraction
pattern over all four electron states is thus of the same basic form as in figure 1, although
the more t states are present (for example in going from V0

As to V−As) the more sharp the
diffraction minima and maxima become.
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(a) (b)

Figure 1. 2D-ACAR,N(px, py), relief plots (upper diagram) and contour plots (lower diagram)
for V −As trapped positrons annihilating with (a) the a1 state orbitals and (b) the t2 state orbitals
according to the model of McMullen and Bishop [9].

The understanding of why one expects to see diffraction patterns from positron trapped
at defects [9], and the available experimental support for such patterns [7, 8] suggest this to
be a useful line of research into the atomic microstructure of crystal defects. However, it
is apparent that there are some difficulties hindering progress in this direction. The first is
seen in equations (1) and (2), which show us that experimentally one observes not just the
diffraction pattern from one localized electron state, but indeed a sum over all the localized
states. This makes it difficult to separate the individual states, and thereby to obtain accurate
structural information. Secondly, we believe, and will endeavour to show in the following
section, that equation (1) embodies only a partial picture in that the positron wavefunction
overlaps not just with the localized dangling bond electrons, but also with the de-localized
valence Bloch states of neighbouring atoms. The consequence is that there will be a high
background signal associated with the de-localized states against which the diffraction signal
from the localized states must be separated. One way of overcoming such difficulties is
to perform ‘difference’ spectra experiments which isolate the diffraction pattern from just
a single electron state. For example one can chop from ‘light-on’ conditions (in which
case a specific localized electron state is populated) and ‘light-off’ conditions (when the
same localized state has zero occupancy) [4]. Alternatively, by studying defects within
the depletion region of a semiconductor junction, one should be able to populate defects
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associated deep levels by an electrical filling pulse, and then to distinguish the annihilation
radiation from the different charge states of mid-gap electronic defects according to their
characteristic thermal emission rates [17].

3. The autocorrelation function approach to defect identification

An alternative, but complimentary way of dealing with the defect structural information
present in the annihilation radiation is that of working with the autocorrelation function
(AF) of the positron–electron wavefunction productψ+,j (r) = ϕ+(r)ψj (r), expressed as
[10]

B
2γ
j (r) =

∫
ψ∗+,j (r + s)ψ+,j (s) d3s. (8)

This function is simply the Fourier transform of the observed momentum densityρ2γ (p):

B2γ (r) =
∫
ρ2γ (k) exp(ik · r) d3k =

∑
j

∫
ρ

2γ
j (k) exp(ik · r) d3k =

∑
j

B
2γ
j (r) (9)

a fact that results simply from the Wiener and Khintchine theorem, which states that the
Fourier transform of a function’s autocorrelogram (i.e.B

2γ
j (r)) is the power spectrum of the

function (i.e.ρ2γ
j (p)) [18]. The main use ofB2γ (r) has in the past been in reconstructing full

three-dimensional momentum densitiesρ2γ (p) for perfect (non-defected) crystals from the
one and two dimensional projections that DBAR and ACAR spectroscopies provide [19, 20].
The point emphasized here is that, with regard to positron annihilation radiation originating
from vacancy traps,B2γ (r) also presents itself as a function with useful application, being
probably the best real-space visualization of the defect’s atomic structure that quantum
mechanics will allow.

From the diffraction-like nature of equation (1) the first thought is that, as in the case of
coherent scattering, one has only to take the square root of the observed momentum density,
infer a sign, and carry out an inverse Fourier transformation in order to retrieve the positron–
electron wavefunction product (which takes on the role of a kind of aperture function). This
is, of course, not permissible since all phase information pertaining to the wavefunction is
lost in the process of measurement [21]. This problem appears intractable, and although
future ways of grafting in phase information, perhaps using symmetry arguments, may be
found, it seems that direct Fourier transformation is the only route available without making
additional inferences or assumptions. Moreover, it seems this is a route worthy of pursuit
because, although an exact real-space image is not obtained, the defect’s spatial structure
should still be quite apparent and deducible from an autocorrelation map through the form
of equation (8). We proceed to check the validity of this suggestion by considering first
the case of the V−As vacancy in GaAs using the more transparent analytical dangling bond
model of McMullen and Bishop [9] as outlined in section 1.

The combined a1 and t2 autocorrelation functionsB2γ (x, y) as obtained under Fourier
transformation of the 2D-ACAR patterns are shown in figures 2(a) and 2(b) respectively.
One notes that peaks (or rather protruding ‘feet’ since they are not fully resolvable) occur
along the [110] and [̄110] directions, which are directions in which the four neighbour
atoms project onto the(001) plane. This is as expected, seeing that for both a1 and t2 states,
shiftingψ+,j (r) along the [110] and [̄110] directions causes an autocorrelation, as expressed
by equation (8), at the atomic separations along these directions (i.e. ata/

√
2 = 7.55 au)

assuming incorrectly the maximum ofψ+,j (r) at r = Ri . Due to the convolution of the
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positron and electron wavefunctionsψ+,j (r) in fact maximizes at the attenuated interatomic
distance ofα2/(α2+ α2

0)(a/
√

2) = 5.13 au, which on observation of theB2γ (x, y) are the
locations of the centres of the ‘feet’. A most obvious and yet important feature of these
B2γ (x, y) mappings is the way in which after a certain radial distance the autocorrelation
function approaches zero. The reason is obvious because on the McMullen and Bishop
model the positron only interacts with its nearest neighbour atoms, in which case once one
interatomic distance has been traversed, the wavefunction autocorrelation can only drop
to zero. A corollary to this is that if it becomes experimentally feasible to measure the
autocorrelation function sufficiently far out from the origin, then the disappearance of the
B2γ (r) signal would be a clear indication of saturation vacancy trapping. The truth of this
statement and in particular the meaning of ‘sufficiently far out’ will depend in practice on
the degree of positron localization in the vacancy, a point that is discussed further below.

(a) (b)

Figure 2. (001) plane 2D-AF (autocorrelation function),B2γ (x, y), relief plots (upper diagram)
and contour plots (lower diagram) forV −As trapped positrons annihilating with (a) the a1 state
orbitals and (b) the t2 state orbitals according to the model of McMullen and Bishop [9]. The
crosses mark the positron attenuated nearest neighbour interatomic separation as projected onto
the (001) plane.

To investigate the autocorrelation function of a vacancy trapped positron further we
have performedab initio first-principles pseudopotential calculations on the valence band
structure in bulk Si and the V0Si defect using the computer code FHI96MD of Stumpf and
Scheffler [22]. The pseudopotentials employed were of the fully separable norm-conserving
Bachelet–Hamann–Schlüter type [23, 24]. In the case of the V0

Si defect, modelling was by
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way of a 2×2×2 supercell (i.e. with 16 atoms) in the fcc basis. The plane wave expansion
coefficientsCnk(G) of the of the electron wavefunctions were computed up to a cutoff
of 30 Ryd for the six specialk points of Chadi and Cohen [25]. However, to correctly
symmetrize the AF and the electron charge density, the symmetric mapping points of the
six specialk points in the summation overk space have to be included. The wavefunctions
at each of these 80 points are given by:

Cn,ĝki (G) =
∑
G′
Cnki (G

′)δG,ĝG′ (10)

where theki are the Chadi–Cohen special points andĝ is a group element belonging to the
symmetry group Td.

In order to calculate the positron wavefunction using density functional theory, the
electron densityρ(r) is required and was computed as

ρ(r) = 2
∑
n

Td∑
ĝ

6∑
ki

∑
G

eiG·r
∑
G′
Cn,ĝk(G

′)Cn,ĝk(G−G′) (11)

where the sum over the group Td includes only those elements which generateĝki 6= ki .
The positron wavefunction expansion coefficientsA(G) were then obtained by diagonalizing
the positron Hamiltonian in reciprocal lattice space with the potential:

V+(G) = 4πe2Zv

G2�
− 4πe2

�
ρ(G)+ V BNCorr (G) (12)

where the first, second and third terms are the ion core, Hartree and positron–electron
correlation terms respectively.ρ(G) and areV BNCorr (G) respectively the Fourier transforms
of ρ(r) and the Boronski and Nieminen parametrization of the electron–positron correlation
potential [26]. The Fourier components of the combined positron–electron wavefunction
Dnk(G) are finally obtained through the convolution:

Dn,ĝki (G) =
∑
G′
Cn,ĝki (G

′)A(G−G′) (13)

which are then used to computeB2γ (r) according to [27]:

B2γ (r) = 1

�

∑
n

Td∑
ĝ

6∑
ki

eigki ·r
∑
G

|Dn,ĝk(G)|2 exp(iG · r) (14)

from which eitherB2γ (x, y) or B2γ (z) can be obtained by makingr a vector in either in
the x, y plane or along thez direction respectively.

In figures 3(a) and 3(b) we show the two dimensional autocorrelation functionsB2γ (r)
on the (001) plane for the bulk|B〉 and defect|D〉 states respectively. It is seen that
B

2γ
|B〉(r) possesses the interesting and well recognized property of becoming zero at the

Bravais lattice positionsr = R [10, 21]. This result, which is essentially a manifestation
of the delocalization of the positron wavefunction over the whole crystal lattice, derives
simply from equation (14), since:

B2γ (R) = 1

�

∑
nk

eik·R
∑
G

|Dnk(G)|2 ≈ 1

�

∑
nk

eik·R = δR,0. (15)

The approximation in equation (15), that is absent in Compton profile spectroscopy [21],
arises because of the convolution of the positron component into the positron–electron
product wavefunction (equation (13)). The positron–electron enhancement factor, not
included in equation (15), also has an effect on the positions of the zero passages, but
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one which is considerably weaker [12, 28]. In semiconductors both effects cause the
zero passages to be shifted slightly radially outwards by∼0.4 au (5% of the inter-atomic
separation) in semiconductors [11, 12, 28]. In the present case this outwards shift may be
seen clearly from figure 4 which shows the variation ofB2γ (r) along the [110] direction.
For the Bravais displacementR11 in Si (lattice constant= 10.2 au) the expectation would
be a zero passage at 7.26 au, and yet the calculated position (excluding enhancement) is
shifted outwards by 0.25 au.

(a) (b)

Figure 3. (001) plane 2D-AF (autocorrelation function). The figure showsB2γ (x, y) relief plots
(upper diagram) and contour plots (lower diagram) for (a) delocalized Bloch state positrons in
Si and (b)V 0

Si trapped positrons in Si. The dips at±20 au positions along the [100] and [010]
directions are artifacts caused by the limited supercell size.

The long range ‘rippling’ effect occurring predominantly along [110] and [1̄10] as seen
in figure 3(a) has some common origin with the ‘feet’ that occur in these directions for the
|D〉 state as discussed above, and as shown in figure 2: namely that it is in these directions
that the electron wavefunctions are localized on atomic sites. That is the overlapping of
the displaced wavefunctionψ+,j (r + s) in these directions will naturally lead to maximal
overlap withψ+,j (r) whens equates with an integer number of inter-atomic separations.
The fact that, as seen in figures 3(a) and 4,B

2γ
|B〉(r) is zero rather than maximum when

r = nR110 results because of interference between the full complement of valence bandk

states (equation (15)) [21]. In spite of this effectiveπ/2 radial outwards phase shift in the
AF plot, the property of maximum autocorrelation along the directions in which atoms are
situated is still retained, providing both a helpful visualization of the lattice and a means of
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Figure 4. [110] direction 1D-AF (autocorrelation function), for Si bulk delocalized positrons
andV 0

Si trapped positrons in Si, according to theab initio pseudopotential calculation described
in the text.

checking the degree of positron non-localization in a crystal.
Turning attention now towards the defect trapped positron state, we see that its AF

mappingB2γ
|D〉(r), as shown in figure 3(b) and 4, clearly shows differences fromB

2γ
|B〉(r). It

is noted that:

(i) the autocorrelation reduces to zero for|r| > 18 au;
(ii) the autocorrelation extends approximately twice as far as predicted by [9] (figure 2);
(iii) the correlation with atomic positions isB2γ

|B〉(r)-like only to nearest neighbour sites
and

(iv) the positions of zero passage in the [110] direction are shifted outwards (figure 4).

Points (i) and (ii) may be simply understood in terms of the structure of the positron density
|ϕ+(r)|2 around the defect site. This is shown in figure 5. It is noted that the positron does
not only overlap with the nearest atoms, but that it extends out into the interstitial regions
of the next atomic shell [8]. The positron localization explains point (i) while the point
(ii) results from the localization not being as confined as modelled in [9] with the positron
sensing the environment out to the next coordination layer of defect atoms.

The explanation of points (iii) and (iv) is not so obvious. We note though, that if the
positron was just annihilating with localized electron orbitals as suggested in [9], it would
follow that a peak (i.e. one of the ‘feet’ in figure 2) should occur at around 7.26 au in the 1D
AF plot (figure 4). Instead we see aB2γ

|B〉(r)-like summedk-space interference effect at this

position reducingB2γ
|D〉(r) to a slightly negative value. The suggestion is that a large fraction

of positrons are annihilating with de-localized electrons on the nearest neighbour atoms. This
is not unexpected. Only one electron out of the four valence electrons belonging to each
neighbouring Si atom contributes to the localized a1 and t2 orbital leaving three in normal
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Figure 5. Relief plot of the positron density in the(11̄0) plane according to theab initio
pseudopotential calculation described in the text. The dips correspond to the locations of Si
atoms.

valence bonding states. Statistically, assuming equal weighting, one would therefore expect
75% of the positron signal to originate from de-localized valence electrons. In practice one
might expect a smaller percentage seeing that the localized electron orbitals formed from
dangling bonds are inward directed [16]. Although we do not fully understand as yet the
outward shifts in zero passage positions (i.e. point (iv)), the suggestion is that the effect
results from the combined removal of certain delocalized electron states and introduction
of localized ones. We also note that our calculation gives a∼4% inward relaxation or the
nearest neighbour atom positions, and that this is also likely to have a significant effect on
the zero passage positions.

The above study strongly suggests that there is a good deal of annihilation signal
coming from delocalized electrons at the vacancy site. This being so one may write the 3D
momentum density originating from the defect state as:

ρ
2γ
def (p) =

nloc∑
j=1

∣∣∣∣ ∫ ϕloc+ (r)ψ
loc
j (r) eik·r d3r

∣∣∣∣2+ ∑
j>nloc

∣∣∣∣ ∫ ϕloc+ (r)ψ
val
j (r) eik·r d3r

∣∣∣∣2 (16)

where the first summation originates from annihilations with a numbernloc localized
electron orbitals, and the second from the remaining full complement of valence band
Bloch states. Equation (16) may also be re-expressed in the form:

ρ
2γ
def (p) = ηρ2γ

loc(p)+ (1− η)ρ2γ
val(p) (17)

whereη is the fraction of positrons that annihilate with localized defect electron orbitals
and ρ2γ

loc(p) and ρ2γ
val(p) are respectively the 3D momentum densities from the localized

and delocalized electron states. A similar expression follows simply for the autocorrelation
function:

B
2γ
def (r) = ηB2γ

loc(r)+ (1− η)B2γ
val(r) (18)

with B
2γ
loc(r) and B2γ

val(r) being the respective AFs from the localized and delocalized
electron states sensed by the positron in its defect trapped state.

The suggestion that the positron annihilates appreciably with non-localized electrons
which contain little structural information by way of the defect’s diffraction presents the
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experimentalist with a problem. As pointed out in section 2 the forms of equations (17)
and (18) suggest the need to carry out ‘difference in electron occupancy’ experiments in
looking clearly at defect structures [7, 17]. The alternative scenario is that, should further
studies show thatB2γ

val(r) is close in form toB2γ
|B〉(r) then equation (18) would possibly

allow the fractionη to be determined and thereby an experimental isolation of the more
usefulB2γ

loc(r) function.

4. Towards high resolution D-DBAR and 2D-DBAR spectra

The aim of this section is to first give convincing evidence that D-DBAR spectroscopy
may in future, with due care being taken, compete with its 1D-ACAR counterpart in
terms of momentum resolution. Based on this we then indicate how a true 2D-DBAR
system of resolution approaching the 2D-ACAR counterpart may be established. Finally,
within the context of general positron–electron momentum spectroscopy (DBAR or ACAR),
we consider the possible spatial viewing range of an experimental AF plot, and thereby
demonstrate the need for high resolution spectroscopy systems if such plots are to be helpful
in defect structural determination.

As pointed out by MacKensie [2] and demonstrated by Lynnet al [14] the combining
of the Doppler shifted spectra from two Ge detectors effectively reduces the instrumental
resolution by at least a factor of

√
2. This arises as a result of the difference signal between

detector outputs being doubled, the blue shift on one photon essentially adding to the red
shift on the other, while the instrumental errors from each detector are uncorrelated and
add only in quadrature. Brittonet al [15] were able to achieve a resolution of 840 eV
(full width at half maximum) using two standard Ge detectors, corresponding to an ACAR
resolution of 3.3 mrad. With the recent advent of digital signal processing in Ge detector
technology the prospects look good for even better performance in the future. Resolution
improvements of 10 to 20% have recently been noted by one manufacturer using this new
technology [29].

Since dramatic improvements in the resolution performance of gamma ray spectroscopy
systems are unlikely in the foreseeable future it is necessary to look towards some
deconvolution procedure for further significant gains [15]. Such deconvolution is made
possible by the fact that there are convenient gamma ray lines such as103Ru (497 keV),
106Ru (511.8 keV) and85Sr (514 keV) sufficiently close to the 511 keV annihilation
radiation that they effectively give the instrumental response of the system [30, 31].
The fact that the gamma radiation from these sources is uncorrelated presents no real
problem since the system can be operated in pseudo-coincidence mode by opening the time
coincidence window [14]. In the present work we refer to the response of the hardware
(detector+ amplifiers+ ADCs etc) to a delta function (gamma-ray) input as the hardware
instrumental function (HIF) of the system, so as to distinguish it from the equivalent
response of the whole instrument (combined hardware+ deconvolution software) which
is referred to as the residual instrumental function (RIF) [32]. The RIF is simply obtained
by deconvoluting the HIF, which in practice amounts to measuring the spectrum of a delta
function using the whole hardware+software measurement system. The fwhm (full width at
half maximum) resolution of the RIF now becomes the important parameter in addressing
the question of how much improvement in resolution can be achieved in deconvoluting
D-DBAR spectra. Since, however, the fwhm of the HIF may vary from one D-DBAR
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system to another we define here a deconvolution improvement factorF :

F = fwhm(HIF)

fwhm(RIF)
. (19)

The procedure of assessing the value ofF and its dependence on experimental
parameters was to construct an MC (Monte Carlo) computer simulation of the experiment.
It was assumed that the shape of the HIF would be close to Gaussian and that any
small departures from this form will not cause any serious error. The fwhm of the
Gaussian was then taken as being covered byNchn discretizations (experimental channels)
(Nchs = 6.25, 25, 100, 400, 1600) and the full HIF spectra was taken to have 10Nchn
channels. With a typical fwhm(HIF) being∼1000 eV this variation corresponds to different
energy calibrations (∼0.63, 2.5, 10, 40 and 160 eV/channel) which are essentially the
experimentally selectable spectral ‘sampling rates’. Experimental D-DBAR spectra were
simulated by throwing events into the chosen energy bins using a tested MC (Monte Carlo)
code [32]. This event number, i.e. the total spectral counts,Ncts , was varied from 105 up
to 108 and represents the second experimentally adjustable parameter. For eachNchn, Ncts
setting, five HIF spectra were obtained and subjected to Fourier transformation. The Fourier
coefficients were compared with those of a perfect Gaussian as shown in figure 6 for the
case ofNchn = 100. The departure from the correct Gaussian coefficient marks the cut-off
frequencyν0 on the Stokes–Fourier deconvolution method [31, 34]. While better methods
of deconvolution are now available [31, 35–37], we utilize the Stokes method here out
of convenience since the RIF takes the simple analytic form sin[2πν0(ε/E)]/(ε/E), from
which the result fwhm(RIF) = (0.603/ν0)E is obtained,ε being the energy (or momentum
or channel) coordinate andE the total spectrum energy (or momentum or channel) range.
It is believed that, although in adopting this approach a lower limit onF is obtained, better
values may be obtainable though superior deconvolution procedures, the general trend in
F will nevertheless be correct. To be systematic in finding a value forν0, in view of
the statistical scatter seen in figure 6, we first took the mean Fourier coefficient value
for frequencies well aboveν0 and then intersected the pure Gaussian coefficient curve at
this value. The results obtained forF are shown in figure 7, and suggest the following
dependence onNchn andNcts :

F = 1.5+ 0.067 ln(NctsNchs). (20)

Let us now perform an optimum estimate of system resolution that may be possible. It
is conceivable that with source gating on a positron beam, i.e. the ‘gating off’ of positrons
while the detectors are busy processing an annihilation event [38], a total 511 keV peak
D-DBAR throughput of 104 s−1 may be achievable, suggesting that over the period of one
day∼109 events may be recorded in a D-DBAR spectrum. With a modern nuclear ADC
(analogue to digital converter) digitizing into 16 k channels, operating on a low momentum
portion of the spectrum (expanded by means of a biased amplifier), say|ε| < 2.6 keV
(|momentum| < 10 mrad) and a HIF of fwhm= 800 eV one obtainsF = 3.4 and a
RIF of fwhm = 230 eV (<1 mrad). The above analysis takes no account of possible
improvements with better deconvolution schemes [31, 35–37], but, on the other hand, it
also takes no account of the degradation of HIF resolution as count rates are increased to
improve the statistics [29]. Much, therefore, remains in the realm of speculation, but the
indication is that D-DBAR resolutions approaching those of ACAR spectrometers may be
achieved in the foreseeable future.

An important factor to consider in any DBAR spectroscopy system is the problem of
amplifier drift. This is unlikely to present any problem, however, if software stabilizes
the spectrum, by binning say 100 s accumulations of data into ‘mini-spectra’ (over which
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time amplifier drift should be negligible) and then making a suitable correction to the data
according to any noted centroid shift [39]. The result of this procedure is the convolution
of a small Gaussian of width∼ fwhm(HIF)/

√
Ncts (i.e. the accuracy with which one can

compute the centroid) onto the data. Again working at a 511 keV event rate of 104 s−1 one
hasNcts = 106 and a convolution of∼1 eV which should present little problem as far as
deconvolution is concerned.

Figure 6. Comparison of Fourier amplitude spectra of perfect Gaussian (open circles) and Monte
Carlo generated Gaussian shaped HIFs for number of spectral eventsNcts equal to 105, 106,
107 and 108. It may be seen that asNcts increases so does the frequencyν0 at which departure
occurs from the correct coefficient.

An important consideration is the range of spatial visualization in an experimental
AF plot. If it is insufficient then much important structural detail of the defect will be
missing. In figure 8 we show schematically the close connection that exists between Stokes’
deconvolution method and the construction of the one dimensional AF mapB2γ (z) from
(ACAR or DBAR)N(pz) spectra. It can be seen that since on the stokes method one divides
the FT[N(pz)] by the FT[HIF(pz)] to obtainB2γ (z) (which is seen as the inverse Fourier
transform of the deconvolutedN(pz)), the cut-off frequencyν0 determines the extent of
visualization inz space. Under discrete Fourier transformation the discretizations inz space
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Figure 7. The deconvolution improvement factor,F , plotted againstNcts , the number of
spectrum counts, andNchn, the number of discrete spectral bins across the fwhm of the HIF.

will be of width K−1(= 1
2h̄cE

−1) so that the rangermax is given by:

rmax = ν0K
−1 ≈ 0.603

h̄c

fwhm(RIF)
. (21)

Taking an fwhm(RIF) of 230 eV, as estimated above, one obtainsrmax = 5.2 Å (10 au).
Improved deconvolution techniques [31, 35–37], which in Fourier space do not truncate
abruptly [32], will undoubtedly extend this range estimate to some extent. Equation (21) is
written for D-DBAR in energy units, but may similarly be applied to raw ACAR spectra
which can achieve resolutions∼0.5 mrad (127 eV). It is thus expected that ACAR should
readily produceB2γ (x, y) visualizations to 20 au. Recent confirmation of this has come
from the work of LiMing et al [11] who, working with the 0.5 mrad resolution 1D-ACAR
data of Shulmanet al [28] were able to see the expected oscillatory behaviour inB2γ (z) out
to this range. The indications are then, based on the theoreticalB2γ (x, y) plots of section 3,
that D-DBAR and to a greater extent ACAR data should be able to show important defect
structural detail. For example, as suggested in section 3, one might hope to see out to
the distance where there is zero wavefunction product autocorrelation due to the positron
wavefunction localization at a vacancy defect. Such observation would allow an unequivocal
decision on whether the positron state was that of a vacancy, or whether any measurable
fraction of positrons were annihilating from the bulk Bloch states.

One of the useful aspects of dealing with the autocorrelation is the helpful way in which
it encodes all the information in the 1D momentum distributionN(pz) into a single line in
B2γ (r) space [15].

B2γ (z) = 1√
2π

∫ +∞
−∞

N(pz) eikzz dkz. (22)

This fact has been widely exploited inρ2γ (p) 3D momentum reconstructions [20]. Here
the form of equation (22) suggests the idea of rotating the sample about a certain crystal
axis (e.g. by using a stepper motor) and for each 2γ annihilation event recording the angle
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Figure 8. Schematic showing the close interconnection between the process of Stokes
deconvolution and production of the 1D-AF plot. The maximum range is given by the cut-
off frequency in Fourier (real) space as described in the text.

of the sample (e.g. by counting motor pulsings). Events could then be ‘binned’ according
to angle and the autocorrelation functionB2γ (r, θ̄ ) for mean bin anglēθ formed by Fourier
transformation plus filtering as already outlined. The thus-formedB2γ (r, θ̄ ) may then be
used for defect identification, although if desired it could always be Fourier transformed
back to form what might truly be referred to as 2D DBAR spectroscopy (it being the direct
analogue of 2D-ACAR). One advantage of 2D-DBAR over 2D-ACAR would be the fact that
it would not require a high source activity, but a disadvantage is that the two Ge detectors,
due to their proximity to the sample and wide solid-angle subtendence, convolute a fairly
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wide range of directions [40]. This could only be improved by moving the detectors back
from the sample, which would in turn require more positrons annihilating per second at the
target. In comparing theory with experiment, however, integration could be performed over
the theoreticalB2γ (r, θ̄ ) both to incorporate the solid-angle effect and the effect of finite
angular bin size.

5. Conclusions

At the present time it is clear that defect AFs could, if obtained either experimentally or
theoretically, form a library from which defects may be identified. What is not however clear
at present is just how much structural information arising from annihilation with localized
defect electron orbitals may be obtained from direct observation of experimental AF
mappings. The uncertainty stems mainly from the fact that the annihilation radiation from a
defect is not exclusively from the localized electron orbitals. A significant fraction appears to
come from delocalized valence states. Whether these delocalized states themselves contain
important structural information, for example in the form of phase shifts arising from the
perturbation imposed by the defect, is another consideration needing further thought and
clarification.

One thing that can be stated with some certainty, however, is that the AF visualization
range is very important, seeing that this permits an inspection of the diffraction detail.
We have shown that the visualization range is inversely related to the instrumental
resolution function. For very high resolution ACAR (or possibly D-DBAR) spectroscopy
the visualization range could be sufficiently large so as to make a clear distinction between a
defect AF plot, which decays to zero intensity at some range commensurate with the spread
of the positron wavefunction, and the bulk crystal Bloch state AF plot which continues
to ripple along the Bravais lattice. Such plots may make for a higher confidence level in
distinguishing between saturation and zero positron trapping regimes.

Another advantage of working with AF plots is that, unlike the presentation of
the defect diffraction information in the form of a 2D-ACAR spectrum where all the
information is compressed close to the centre of the plot on top of the momentum ‘hill’, the
structural information is spread out towards the outer regions of the plot, making for easier
visualization and interpretation. Coupled to this is the fact that the plot will be in real-space
coordinates, and thus more tangible to the spectroscopist, who could, for example, overlap
the plot with the known (unrelaxed) atomic lattice positions. Moreover, the conventionalS

andW information obtained in momentum spectroscopy would not be lost in the process of
Fourier inversion, and defined radii on the AF plot would correspond to the ‘core’ region
and the ‘valence’ region. Indeed the operation of forming these parametrizations may be
clearer in an AF plot as the mean core orbital radii are known.

Much of the above is still speculation. The next step is clearly to take both experimental
2D-ACAR and 2D-DBAR spectra and form AF mappings of known defects. In terms of
D-DBAR it will be important to put effort into checking results of the present work with
regard to the achievable RIF resolutions. The need for further theoretical work is also
clearly indicated, in particular the determination of the relative contributions of localized
defect orbitals and delocalized valence orbitals.
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